
Student: Jacob Chen

Faculty Advisor: Dr. Xiaowen Zhang

Introduction
Cloud computing has experienced exponential growth over the last 
decade. Public cloud computing is when a third-party cloud service 
provider manages all hardware, software, and other supporting 
infrastructure for a company. Public cloud computing provides lower 
costs, no maintenance, better scalability, and high reliability. 

The purpose of this project is to develop a secure index which will 
allow a user to search encrypted data. This is achieved by creating a 
trapdoor when building the secure index. A trapdoor can only be 
generated with a private key. This trapdoor is then used as a private 
key to generate a codeword. The codeword is added to a bloom 
filter. To search the encrypted data, the user must have the private 
key. Without the private key the user will not be able to generate the 
correct trapdoor which will also cause the codeword to be incorrect.

Hypothesis
How can a user store encrypted documents on an untrusted third-
party server and search their files without first decrypting?

Terminology
Bloom filter – a space-efficient probabilistic data structure that has
two main functions: to add an item to a set and to determine
membership of a set.

HMAC-SHA1 – a type of message authentication code (MAC) with
two parameters a secret key and a message of any size. The output
(MAC) is a string with a fixed length of 160 bits

Trapdoor – the output from a HMAC-SHA1 function whose
parameters are the private key and plaintext word

Codeword – the output from a HMAC-SHA1 function whose
parameters are the trapdoor and document name

Insertion into a Bloom Filter
For each unique word in a document, create a trapdoor by calling the
HMAC-SHA1 function
• HMAC-SHA1(secret-key, cup)
• Trapdoor = 89e99f568c08b6a022074a1c7a691a275f7253ac
Create a codeword by calling the HMAC-SHA1 function again using the
trapdoor and document name as the parameters
• HMAC-SHA1(89e9…53ac, document1)
• Codeword = 0f9b0606f84f83aaf821346cb1c420da25c00e7d
Take the last two bytes of the codeword and convert it into an integer
• 0e7x (hex) = 3709 (integer)
In the bloom filter set the bit in index[3709] to 1.
This effectively adds the word cup to document1

Continue this process for each unique word in the document

Searching the Secure Index

Generate the trapdoor by using the private key and search word
• HMAC-SHA1(secret-key, beef)
• Trapdoor = f9c97f054ac8cfb31989a7de4c41f701c01300a8
Generate a codeword using the trapdoor and each document name then
convert the last two bytes of the codeword to an integer
• HMAC-SHA1(f9c9…00a8, document1) = 731b = 29467
• HMAC-SHA1(f9c9…00a8, document2) = 5bd6 = 23510
• HMAC-SHA1(f9c9…00a8, document3) = 5c66 = 23654
• HMAC-SHA1(f9c9…00a8, document4) = c52b = 50475
In document3 index[23654] is set to 1 indicating that the word beef is in
document3

Space and Time Complexity
Time complexity = O(n)
• It takes O(1) time to check an individual bloom filter but there are n

bloom filters, therefore the time complexity to search is O(n)
Space complexity = O(n)
• O(n) = each document has their own bloom filter

References
● Bloom, Burton H. "Space/time trade-offs in hash coding with allowable errors."

Communications of the ACM 13.7 (1970): 422-426.
● Chum, Chi Sing, Xinzhou Wei, and Xiaowen Zhang. "A Split Bloom Filter for Better

Performance." Journal of Applied Security Research 15.2 (2020): 147-160.
● Goh, Eu-Jin. "Secure indexes." IACR Cryptol. ePrint Arch. 2003 (2003): 216.

Screenshots

Searchable Symmetric Encryption Scheme 
Implementation of a Secure Index

Figure 2. Console output of the secure index

Figure 4. Decrypted documents on a local machine

Figure 3. Encrypted documents located on a server

Figure 1. Flowchart for creating a secure index Value 0 0 0 … 1 0 0 … 0

Index 0 1 2 … 3709 3710 3711 … 65535

Value 0 0 0 … 1 … 1 … 1 … 0

Index 0 1 2 … 23654 … 37016 … 54017 0 65535

Figure 5. Sample bloom filter for insertion

Figure 6. A secure index is an array of bloom filters. This figure represents a sample bloom 
filter for document3. It has three unique words whose index locations are set to 1.

Figure 0. Passing a secret-key and message into a HMAC-SHA1 function


